Convergents of e
Problem 065: Convergents of e
The infinite continued fraction can be written, sqrt(2) = [1;(2)]
, (2)
indicates that 2
repeats ad infinitum.
In a similar way, sqrt(23) = [4;(1,3,1,8)]
.
It turns out that the sequence of partial values of continued fractions for square roots provide the best rational approximations.
Let us consider the convergents for sqrt(2)
.
1 + 1/2 = 3/2
1 + 1/(2+ 1/2) = 7/5
1 + 1/(2+ 1/(2+ 1/2)) = 17/12
1 + 1/(2+ 1/(2+ 1/(2+ 1/2))) = 41/29
Hence the sequence of the first ten convergents for sqrt(2)
are:
1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, ...
What is most surprising is that the important mathematical constant,
e = [2; 1,2,1, 1,4,1, 1,6,1 , ... , 1,2k,1, ...]
The first ten terms in the sequence of convergents for e
are:
2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465, 1457/536, ...
The sum of digits in the numerator of the 10th convergent is 1+4+5+7=17
.
Find the sum of digits in the numerator of the 100th convergent of the continued fraction for e
.
Solution:
#######################################################################
v -1<
>"F">:9+"0"\0p:9+"0"\2p:|
v"c"p040p2"O1"p0"O0" $<
>$1 v@.<v02-"0"p0g03:g2g03-"0"g0:p03:<-1<
>:1-3%:!| >:1+3/2*v +>g*+40g+:55+%"0"+30g2p55+/40p:9-|
>:| >2-#^_1 >20 p "O"v # $
| ># #+ #1 #: #- #12# ^# ># ^# <
$ >\v >\:!|
>0"F">:9+2g"0"-:| >:!|1 +<
^ -1_ ^#1<
Explanation:
Nice algorithm if you see the pattern in the numerators and denominators.
denom(n+1) = denom(n) + numer(n) * frac(n)
numer(n+1) = denom(n)
and the fraction at position n is calculated by (OEIS-A003417):
int GetFrac(int idx)
{
if (idx == 0) return 2;
if ((idx-1) % 3 == 0) return 1;
if ((idx-1) % 3 == 1) return ((idx+1)/3)*2;
if ((idx-1) % 3 == 2) return 1;
return 2;
}
The rest is just multiplication and long addition (we exceed the 64bit range) a hundred times ...
Interpreter steps: | 477 489 |
Execution time (BefunExec): | 124ms (3.85 MHz) |
Program size: | 80 x 14 (fully conform befunge-93) |
Solution: | 272 |
Solved at: | 2015-07-08 |